
MQL4 Language for Newbies. Custom Indicators
Author: Antoniuk Oleg

Types of Indicators

Now I will show you, what kinds of indicators exist. Of course, you have seen a lot of them, but
now I would like to draw your attention to features and parameters of indicators, thus we will
make a small classification of features and parameters. It will then help you to write custom
indicators. So, the first simple indicator:

This is Moving Average, MA, a widely used technical indicator. Pay attention to the following
important facts:

• the indicator is drawn in the chart window
• the indicator shows only one value
• the range of the indicator values is unlimited and depends on the current prices
• the line is drawn with a certain color, width and style (solid line)

Now let us view another indicator:

It is Williams’ Percent Range, %R. Pay attention to the following important facts:

• the indicator is drawn in a separate subwindow
• like in the previous case, the indicator shows only one value
• the range of the indicator values is strictly limited
• the drawn line has another style, color and width

Thus, the following indicator properties exist:

• the indicator is drawn: in a chart window or in a separate subwindow. Now let us try to
understand, why Moving Average is drawn on the chart, and Williams’ Percent Range,
%R is drawn in a separate window. The difference is in the range of the shown values.
Note, that the second indicator shows values in the range from 0 to -100. Now imagine
that we show these values in a chart window. And what would happen?? You would not
see this line, because the price has a much narrower range. In our case it is from 0.6805
to 0.7495. But it is not all. Actually, prices are positive numbers, and our value is
negative. Indicators are drawn in a separate subwindow if their values are outside the
price range of the active chart. And if the range is almost the same (for example, different
kinds of moving averages), an indicator is drawn in a chart window. In future set this
indicator parameter according to this simple logics. Here is a picture:

• an indicator that is drawn in a separate subwindow may be limited to a strict range. It
means the terminal sets a fixed scale for showing indicator values; and even if values
exceed the range, you will not see them. If you disable this parameter, the terminal
automatically will change the scale so that it contains all values of an indicator. See the
picture:

• an indicator may show its values using different colors, styles and width. You have seen
it quite often when setting up the drawing of indicators in the terminal. Here is one
restriction: if you use a line width more than 1, you may use only one style - solid line.

Here is one more indicator:

As you see, the indicator Volumes is drawn in the form of a histogram. So, there are several
types of showing indicator values. Here is an example of another type:

The indicator Fractals is drawn in the form of special symbols. Now look at the following
indicator:

This is Alligator. Note, the indicator simultaneously draws three values (balance lines). How
does it work? Actually, any indicator (there are some exceptions, but we will talk about them
later) uses data buffers when showing values.

Data buffer is almost a simple array. Its peculiarity is in the fact that this array is partially
managed by the terminal. The terminal changes the array so, that at the receipt of each new bar, a
shift takes place. It is done for the purpose that each array element corresponds to a certain bar.
The maximal number of shown data buffers in one indicator is 8. It may seem strange now, but
soon you will understand that it could not be otherwise. Just remember that there is a separate
data buffer for each line in Alligator. Each data buffer has its own parameters, according to
which the terminal draws them. In our case there are 3 buffers that can be described in the
following way:

1. The first buffer is drawn by a solid green line at a width 3.
2. The second buffer is drawn by a dashed line of red color and width 1.
3. The third buffer is drawn by a solid blue line at a width 2.

It is not necessary for an indicator to draw a buffer. It can be used for intermediary calculations.
That is why the number of buffers may be larger than you see. But the most important property
of data buffer is that each buffer element should correspond to a certain bar on a chart. Just
remember this. Soon you will see how this works in a code.

Now let us draw a conclusion of our small excursion. Any indicator has the following

parameters:

• one or more data buffers (though not necessarily) for showing its values or for
intermediary calculations. Each buffer, in its turn has its own parameters that define how
it will be drawn and whether it will be drawn. For example: draw the value in the form
of a histogram, symbol or line; what color and style;

• where the indicator should be drawn (in a chart window or in a subwindow);
• if the indicator is drawn in a subwindow, should we limit the range or should the scaling

be automatic.

Make sure that you clearly understand all these parameters. Now we will use a Wizard for
creating a custom indicator.

Creating a Custom Indicator

Start MetaEditor, select File->New:

Then we see a window Expert Advisor Wizard, select Custom Indicator, click Next:

Fill in fields Name, Author and Link. Everything is as usual here, but now you may add
parameters. What is this?

Parameters are common variables that can be set by a user. And what is important, these
variables may be used in an indicator code. The application of parameters is obvious - you
enable users to set up some aspects of the indicator operation. This can be anything you wish.
For example, timeframe to use, operating mode, number of bars for averaging etc.

As an example let us try to add a parameter that will show the number of bars processed for the
calculation of the indicator values. Where can it be used? Imagine that your indicator seriously
loads your processor because of too many calculations. And you often change the timeframe of
the chart and view only the last 100-200 bars. Then you do not need other calculations that waste
time. This parameter will help you in such a situation. Of course, there will be nothing difficult
in our indicator that can waste the computer resources. This is only a variant of using indicator
parameters.

So, for adding a parameter click Add (1). After that you may change a variable name (2). In our
case we substitute it for barsToProcess. You may also change the initial value (3), i.e. default
value. Change it into 100. Besides you may change the variable type, but in our case we do not
need to change anything, because type int suits perfectly to our purposes. After all necessary
changes are made, click Next:

It is almost ready. Now indicate how the indicator should be drawn: in a separate window or in
a chart window. You may also limit the range. Check Indicator in separate window. Below
is an empty field Indexes (data buffers). Here you may add the necessary number of data buffers
(maximum 8). Besides, you may always add or delete a buffer later, changing the code. Click
Add for adding a buffer. Now you may change the way the buffer will be drawn: line,
histogram, section, arrow. We will not change anything, so our type is Line. Set up the color
and click OK.

Finally, your first indicator is ready! Well, it does not draw anything, but it is a code! The file
with the source code is in the folder with indicators: MetaTrader4\experts\indicators.

Let us Analyze Each Line

Now let us see, what Meta Editor has created:

//+--+
//| myFirstIndicator.mq4 |
//| Your name |
//| web address |
//+--+

As usual the head consisting of one-line comments includes the information you have written

earlier. Next:

#property copyright "Antonuk Oleg"

Do you still remember the preprocessor directive #define from the second article? We used it for
declaring constants. So, here is one more directive used for denoting specific properties of an
indicator. In our case it is used for indicating authorship. Please note that is starts with the
special sign #, then goes the key word property (without a space). Then comes a concrete
property that we want to set, in our case it is copyright, and then the value of this property. In
our case it is a line with your name. Using the directive #property you may set up many specific
aspects of the indicator. You will see it now. All these properties will be set up by default. Let us
go further:

#property link "banderass@i.ua"

This directive shows, how to contact the author. You may ask where this information (the
author's name and contact information) is, because it is not shown anywhere. But it is included
into the executable file. And if you view the executable file as a common text, you will see this
information:

Next:

#property indicator_separate_window

This directive shows, that the indicator must be drawn in a separate subwindow. As you see,
there are no additional parameters, as distinct from the previous directive.

#property indicator_buffers 1

This directive indicates, how many data buffers will be used by the indicator. You may have
noticed that directives are in some way similar to common functions: they also accept some
parameters and do something in response. But there is an important difference: they are executed
in the first instance (before compilation).

#property indicator_color1 DarkOrchid

Indicate default color for the first buffer. Note that buffer numeration starts from one, not from
zero. Try to remember it, so that you have no confusion in future. The color is indicated using
one of many predetermined names. You may see key words for all available colors in the help:
MQL4 Reference -> Standard Constants -> Web-Colors. Similarly you may indicate the
color for other buffers, simply change the buffer number.

extern int barsToProcess=100;

This is our parameter of the indicator. We have set it in the Wizard. Note that the only

difference from a common variable is the key word extern before the variable type. This is how
the parameter will look like for a user at the indicator start:

Next:

double ExtMapBuffer1[];

This is a usual array. But the dimensionality is not indicated and initialization is not performed.
This array will later be set up as a data buffer.

Then we declare and describe functions. As distinct from a usual script, each indicator has 3
functions, not 1:

• init() - this function is called by the terminal only once, when we start the indicator. Its
purpose is to prepare the indicator for operation, set up data buffers, check parameters
(what a user has written) and other preparatory actions. This function is not obligatory. If
you do not perform a code in it, you may delete it.

• deinit() - this function is also called only once, when you delete an indicator from a chart.
You should prepare the indicator for the termination of its operation. For example, close
opened files, delete graphical objects from the file (do not worry, you will learn how to
do it). This function is also not obligatory.

• start() - as distinct from scripts, in indicators this function is called at each tick. I.e. when
new quotes appear from the currency pair, to the chart of which you have attached the
indicator, this function is called. Besides, this function is called at the indicator start, i.e.
after the function init().

Let us see what happens in each function:

int init()
{

 SetIndexStyle(0,DRAW_LINE);
 SetIndexBuffer(0,ExtMapBuffer1);

 return(0);
}

Here we see the calling of two important functions for setting a data buffer:

SetIndexStyle(0,DRAW_LINE);

This function sets how to draw the data buffer. The first parameter indicates, to what buffer
the change should be applied. Please note, that in this function (and similar functions) the buffer
numeration starts from zero, not from one like in directives. It is an important moment, so be
careful. The second parameter indicates, how to draw the chosen buffer. In our case we use
the constant DRAW_LINE, which shows that the buffer will be drawn as a line. Of course, there
are other constants, but we will talk about them later.

SetIndexBuffer(0,ExtMapBuffer1);

This function "binds" an array to a buffer number. I.e. it shows that the buffer with the indicated
number will use the indicated array for storing data. So, changing the elements of this array you
will change the value of the buffer. Actually an array is a data buffer. The first argument is the
name of the array that should be bound.

return(0);

End of the function, return zero - the initialization was successful.

int deinit()
{
//----

//----
 return(0);
}

The function of deinitialization is empty by default.

int start()
{
 int counted_bars=IndicatorCounted();
//----

//----
 return(0);
}

Now comes the most important function - the main code is located here. Pay attention: the
variable counted_bars is declared beforehand, it is initialized by the function
IndicatorCounted(). This variable is usually used for the optimization and speedup of the

indicator operation, this will be analyzed later. And now let us draw something in the indicator
window.

Finishing the Indicator

Let us decide what should be displayed. What will the indicator show us? Something simple.
First let's draw random numbers. Why not? This guarantees 50% of profit signals.

Let's write in our function init() a code for the initialization of the generator of random numbers:

int init()
{

 SetIndexStyle(0,DRAW_LINE);
 SetIndexBuffer(0,ExtMapBuffer1);

 // initialization of the generator of random numbers
 MathSrand(TimeLocal());

 return(0);
}

The initialization is ready, now comes the function start():

int start()
{
 int counted_bars=IndicatorCounted();

 for(int i=0;i<Bars;i++)
 {
 ExtMapBuffer1[i]=MathRand()%1001;
 }

 return(0);
}

Compile - F7. Start the terminal, find the panel Navigator, select the section Custom Indicators
and double-click the name of our indicator:

The indicator will be attached to the active chart:

You see, it all works. Now let us see what the code does:

for(int i=0;i<Bars;i++)

We use the cycle for to go through all elements of the data buffer. As a certain bar
corresponds to each element of the buffer, we use the cycle, starting from the zero bar (the last
available) and end with the first available, which is in succession one less than the variable Bars
(because we count bars from zero).

{
 ExtMapBuffer1[i]=MathRand()%1001;
}

At each iteration a counter is increased by one, and we move from the last available bar to the
first one at the same time assigning to each buffer element (which corresponds to a certain bar) a
random number from 0 to 1000. If it is difficult for you to understand, how a certain buffer
element corresponds to a certain bar, try to change the cycle in the following way and see the
result in the terminal:

for(int i=0;i<Bars;i++)
{
 ExtMapBuffer1[i]=i;
}

Now the indicator will show the number of each bar, look:

You see, the bar number increases from the last bar to the first one (from 0 to Bars). Hope now
you understand the correspondence of buffer elements to bars on the chart.

Now let us get back to the code of the "random" indicator. If you used it at least several minutes,
you would see that each indicator tick draws absolutely different chart. I.e. each tick makes
recalculations of what was calculated the previous time. This is inconvenient for us because we
cannot see even what happened a tick ago. But this does not matter, because no one will use such
an indicator - we are simply learning to write it. There is one more thing. Imagine, you indicator
makes a lot of complex calculations and calculation of one bar requires large processor
resources. In such a case, if a new price appears, your indicator will calculate the value for each
available bar, even if it was done earlier. Is it clear? Instead of calculating only once, it will
calculate again and again. Eliminating such problems connected with unreasonable waste of
resources is called optimization.

How can we solve this problem? Usually it is done in the following way. First an indicator is
calculated on all available candlesticks, and only then when quotes are received, it will
recalculate the value only for the last candlestick. This is reasonable - no unnecessary actions.
Now let us optimize the function start(), so that it works in the following way:

int start()

{
 int counted_bars=IndicatorCounted(),
 limit;

 if(counted_bars>0)
 counted_bars--;

 limit=Bars-counted_bars;

 for(int i=0;i<limit;i++)
 {
 ExtMapBuffer1[i]=MathRand()%1001;
 }

 return(0);
}

Let us analyze each line:

int counted_bars=IndicatorCounted(),

We declare the variable counted_bars that will store the number of bars calculated by the
indicator. Actually the function IndicatorCounted() returns the number of unchanged bars
after the previous call of the function start(). So, if it is the first start() calling, IndicatorBars()
will return 0, because all bars are new for us. If it is not the first calling, changed is only the last
bar, so IndicatorBars() will return a number equal to Bars-1.

limit;

Here is one more variable that will be used as a limiter, i.e. will help the cycle to be completed
earlier, omitting already calculated candlesticks.

 if(counted_bars>0)
 counted_bars--;

As it was already said, if IndicatorCounted() returns 0, the function start() is called for the first
time and all bars are "new" for us (the indicator was not calculated for them). But if it is not the
first calling of start(), the value equal to Bars-1 will be returned. So, this condition tracks such a
situation. After that we diminish the variable counted_bars by 1. Only the last bar can be
changed, so why do we do this? The fact is, there are some situations, when the last tick of the
previous bar remains unprocessed, because when the last tick came, the last but one tick was
processed. And the custom indicator was not called and was not calculated. That is why we
diminish the variable counted_bars by 1, in order to eliminate this situation.

limit=Bars-counted_bars;

Here we assign to the variable limit (the limiter) the number of last bars that need to be
recalculated. While the variable counted_bars stores the number of already calculated
candlesticks, we simply find the difference between Bars (the total number of available bars) and

counted_bars for defining, how many candlesticks must be calculated.

for(int i=0;i<limit;i++)
{
 ExtMapBuffer1[i]=MathRand()%1001;
}

The cycle itself almost did not change. We changed only the condition of implementation.
Now the cycle will be performed while the counter i is less than limit.

Now optimization is over. If you observe the updated version of the indicator, you will see that
when a new tick is received, the value only of last bar changes. Try to use such an optimization
constantly, even if your indicator does not calculate anything difficult. This is haut ton.

Do you remember an indicator parameter barsToProcess that we added in the Wizard. Now it is
high time to use it. We simply need to add a couple of lines before the cycle:

int start()
{
 int counted_bars=IndicatorCounted(),
 limit;

 if(counted_bars>0)
 counted_bars--;

 limit=Bars-counted_bars;

 if(limit>barsToProcess)
 limit=barsToProcess;

 for(int i=0;i<limit;i++)
 {
 ExtMapBuffer1[i]=MathRand()%1001;
 }

 return(0);
}

You see, everything is quite simple. We check if limit is more than barsToProcess. If yes,
diminish the limiter through assigning. As a result, if we set barsToProcess=100, you will see a
picture like:

As you see, only the number of bars set by us is calculated.

Our indicator is almost ready. But we do not have clear signals for entering the market. So we
need to add more certainty. For this purpose we will use levels.

Levels are horizontal lines drawn by the indicator using a certain style, color and width. It should
be noted here that the maximal number of levels on one bar is 8. Besides you may set levels
using directives or functions. It is more preferable to use the first variant, if you want to set
levels by default. For the dynamic change of levels during the indicator's operation use functions.
So let us set two levels: the first one on the point 800, the second - 200. For this purpose let us
add several directives at the beginning of the indicator code:

//+--+
//| myFirstIndicator.mq4 |
//| your name |
//| web address |
//+--+
#property copyright "Your Name"
#property link " web address "

#property indicator_level1 800.0
#property indicator_level2 200.0
#property indicator_levelcolor LimeGreen
#property indicator_levelwidth 2
#property indicator_levelstyle 0

#property indicator_separate_window

Let us analyze new directives:

#property indicator_level1 800.0

This directive shows, that the level 1 should be places at the point 800.0. Pay attention that buffer
numeration starts with 1, like in the directives for buffer setting. For setting up another level,
simply change the level number at the end of a directive:

#property indicator_level2 200.0

There is an important limitation in setting the external form of levels. You cannot setup each
level individually. All settings are applied absolutely to all levels. If you need to setup each level
individually, you should use objects (and do not use levels at all), which will be described in the
next article.

#property indicator_levelcolor LimeGreen

This directive sets color, which will be used for drawing all levels.

#property indicator_levelwidth 2

This directive sets width for drawing lines of all levels. You may set the width from 1 to 5. Do
not forget, that if a width is more than 1, levels will be drawn in a solid line. If you need another
style of drawing levels, use only the width 1.

#property indicator_levelstyle STYLE_SOLID

This directive sets style for drawing lines. There are the following preset constants:

• STYLE_SOLID - solid line
• STYLE_DASH - dashed line
• STYLE_DOT - dotted line
• STYLE_DASHDOT - dash-dotted line
• STYLE_DASHDOTDOT - dash-dotted line with double dots

We have finished developing our "random" indicator. Now let us save the source file with a more
appropriate name - randomIndicator.mq4. Recompile the source file once again. This indicator
will also be used in the following part. The final version should look like this:

Function iCustom

Now let us dwell on a very useful function - iCustom. It is used for getting values of any custom
indicator. Remember, for built-in indicators we use functions for working with technical
indicators described in the previous article (for example: iADX(), iMACD etc.). For all other
indicators (custom indicators) use the function iCustom. This function is a universal one and can
be applied to any custom indicator that meets the following requirements:

• the indicator is compiled and is in the form of an executable file (*.ex4)
• the indicator is in the folder MetaTrader 4\experts\indicators

The function prototype has the following form:

double iCustom(string symbol, int timeframe, string name, ..., int mode, int
shift);

Parameters:

• symbol – defines, which financial security (currency pair) should be used for the
calculation of a custom indicator values. Use NULL (or 0), if you need the current
(active) security (chart).

• timeframe – defines, on which timeframe (period) the indicator should be used. Use 0

for the current period or one of constants (PERIOD_M1, PERIOD_M5, PERIOD_M15,
PERIOD_M30, PERIOD_H1, PERIOD_H4, PERIOD_D1, PERIOD_W1,
PERIOD_MN1).

• name – the name of the executable file of the custom indicator. Only the name should be
indicated: do not write the extension (.ex4) or the path to the file (experts/indicators/). For
example, if the name of the executable file of the custom indicator is
"RandomIndicator.ex4", you should write "RandomIndicator". The register here is not
relevant. It means you may write "RANDOMindicator" and it will work.

• ... – here you should indicate all the values of the custom indicator parameters. For
example, in our indicator RandomIndicator there is only one parameter - barsToProcess.
I.e. in our case we write here 100 (or any other suitable for you value). If the number of
parameters is more than one, the are indicated in the same succession as they are declared
in the custom indicator, comma separated. Now we will try to write an indicator based on
this function and you will understand it better.

• mode – the operation mode of the custom indicator. Actually it is the number of the data
buffer, the value of which you want to get. The numeration starts from zero (not like in
directives). If the custom indicator has only one data buffer, this parameter should be
equal to 0.

• shift – defines, to what bar the custom indicator should be used.

Examples of Usage:

ExtMapBuffer[0]=iCustom(NULL,PERIOD_H1,"Momentum",14,0,0);

// assign to the first element of the array ExtMapBuffer the value of the
custom
// indicator Momentum on the last available bar. We use here the active
// security on hour chart. The name of the executable file: Momentum.
// This indicator has only one parameter - period. In our case the period
// is equal to 14. This indicator has only one data buffer, so we use zero,
// in order to get access to its values.
double signalLast=iCustom("EURUSD",PERIOD_D1,"MACD",12,26,9,1,0);

// declare a new variable signalLast and assign to it the value of the custom
// indicator индикатора MACD on the last available bar. We use the pair
EURUSD on
// a daily chart. The name of the executable file: MACD. This indicator has 3
parameters:
// period for quick average, period for slow average and period for a signal
line.
// This indicator also has 2 data buffers. The first one is with values of
the main line. The second one
// with values of a signal line. In our case we take the value of the signal
line.

Signal Indicator

Now we will write one more simple indicator. So, imagine the following situation. You have
written quite a complex indicator with many data buffers. Many of them are displayed in a

separate window, others are used for intermediary calculations. You know exactly signals to buy
and to sell. But the difficulty is, it is very hard to trace the signals. You need to constantly look
into your monitor, trying to find crossing lines, which are above levels or below them. That is
why you decide to write one more indicator that could do it for you and would only show you the
entry signals. For example, these could be arrows showing in what direction you should open
positions. This is only a fantasy showing where a signal indicator could be appropriate. Our
situation is much easier, but still is similar to the first one.

We will write a signal indicator based on the previous indicator RandomIndicator. First we need
to define entry conditions - here we will need our levels. So conditions will be the following:

• if a line moves above the upper level (800.0), buy
• if a line moves below the lower level (200.0), sell

Now it is high time to write a new indicator. Use Expert Advisor Wizard to create a new custom
indicator. Add one additional parameter as in the previous case:

And the last step (Drawing properties of the Custom indicator program) should be the following:

First add two data buffers that will be used for drawing signals to buy and to sell in the form of
arrows. Change the type of data buffers into Arrow. Change colors and symbol codes. Below are
all available symbol codes:

We do not need to draw the indicator in a separate window, because we are going to draw signals

in the chart window.

We use two data buffers, because we cannot draw different arrows (symbols) using only one
buffer. Each data buffer that is displayed in the form of symbols can be drawn only by one
symbol. Now let us analyze very attentively the indicator initialization code:

int init()
{
//---- indicators
 SetIndexStyle(0,DRAW_ARROW);
 SetIndexArrow(0,236);
 SetIndexBuffer(0,ExtMapBuffer1);
 SetIndexEmptyValue(0,0.0);
 SetIndexStyle(1,DRAW_ARROW);
 SetIndexArrow(1,238);
 SetIndexBuffer(1,ExtMapBuffer2);
 SetIndexEmptyValue(1,0.0);
//----
 return(0);
}

Pay attention that now another constant for the type of data buffer drawing is used -
DRAW_ARROW:

SetIndexStyle(0,DRAW_ARROW);

We also see two new functions that are used for setting the symbol drawing. SetIndexArrow is
used to set what symbol will represent a buffer. The first argument is the buffer number, the
second one is the symbol code that will represent the indicator:

SetIndexArrow(0,236);

SetIndexEmptyValue is used for indicating an "empty" value. It means we indicate the value, at
which we need to draw nothing. It is very convenient in our case, because signals are generated
not on every bar. It works the following way: when we do not need to draw an array on the
current bar, you assign to the corresponding data buffer element an "empty" value, in our case it
is 0. The first argument of the function is the number of the data buffer. The second one is the
"empty" value:

SetIndexEmptyValue(0,0.0);

The remaining initialization code sets buffers analogous to the "random" indicator, that we
analyzed earlier. Now let us finish the code in the function start():

int start()
{
 int counted_bars=IndicatorCounted(),
 limit;

 if(counted_bars>0)
 counted_bars--;

 limit=Bars-counted_bars;

 if(limit>barsToProcess)
 limit=barsToProcess;

 for(int i=0;i<limit;i++)
 {
 double randomValue=iCustom(NULL,0,"RandomIndicator",barsToProcess,0,i);

 if(randomValue>800.0)
 ExtMapBuffer1[i]=High[i]+5*Point;
 else
 ExtMapBuffer1[i]=0.0;

 if(randomValue<200.0)
 ExtMapBuffer2[i]=Low[i]-5*Point;
 else
 ExtMapBuffer2[i]=0.0;
 }

 return(0);
}

The whole code until the cycle is repeated from the "random" indicator. Actually this code is
standard in any indicator and is repeated with small changes. Now let us analyze the cycle in
details:

 for(int i=0;i<limit;i++)
 {
 double randomValue=iCustom(NULL,0,"RandomIndicator",barsToProcess,0,i);

 if(randomValue>800.0)
 ExtMapBuffer1[i]=High[i]+5*Point;
 else
 ExtMapBuffer1[i]=0.0;

 if(randomValue<200.0)
 ExtMapBuffer2[i]=Low[i]-5*Point;
 else
 ExtMapBuffer2[i]=0.0;
 }

First we declare the variable randomValue (random value) and assign to it the value of our
"random" indicator on the current bar. For this purpose we use the function iCustom:

double randomValue=iCustom(NULL,0,"RandomIndicator",barsToProcess,0,i);

// get the value of the "random" indicator on the i-th bar. Use the active
chart on the current period.
// The name of the executable file of indicator: RandomIndicator. Single
parameter of "random" indicator
// is number of bars for calculation. In our indicator there is also
analogous variable, that is why
// we use it. In "random" indicator only 1 data buffer, so we use 0, for

getting
// access to its values.

If the value of the "random" indicator is more than the upper level (800), this is a signal to buy:

if(randomValue>800.0)
 ExtMapBuffer1[i]=High[i]+5*Point;

// if there is signal to buy, assign to current element of data buffer the
highest
// value of the current bar. Besides add 5 points, so that the arrow were a
little higher
// than the current price. The predetermined variable Point is used to get
automatically
// a multiplier for presenting points. Otherwise we would have to write
something like
// this: ExtMapBuffer1[i]=High[i]+0.0005;

Otherwise, if there is no Buy signal:

else
 ExtMapBuffer1[i]=0.0;

// if no Buy signal, assign to the current element of data
// buffer "empty" value, which is equal to 0.0.
// Now no symbol will be shown on this bar.

If the value of the "random" indicator is below the lower level (200), this is a Sell signal:

if(randomValue<200.0)
 ExtMapBuffer2[i]=Low[i]-5*Point;

// if it is signal to sell, assign to the current element of data buffer the
lowest
// value of the current bar. Besides diminish the value by 5 points, so that
the arrow were
// a little lower than the current price.

Otherwise, if there is no Sell signal:

else
 ExtMapBuffer2[i]=0.0;

// if no Sell signal, assign to the current element of data
// buffer "empty" value. Now no symbol will be shown on this bar.

This was the cycle. Compile the indicator and start it in the terminal:

About the Style

No, this is not the rules of choosing a tie to suit a coat and shirt, though it is always timely. The
programing style is very important, if you do not write your code only for yourselves. Actually,
each developer has his own programming style. Each one designs cycles in his own way, makes
different indents (or no indents at all), declares variables etc. You should find your own
programming style, which you will always use later. I would like to give you a several
recommendations that will help you to make your code easy to read and understand:

• do not write many operations in one line semi-colon separated (;)
• write names of variables and functions in English
• in variable names use capitals as delimiters
• avoid the excessive use of abbreviations and reductions in the names of variables and

functions
• make indents of a certain length to have even code blocks
• in each new body (of a cycle or a condition) make additional indents
• make the grouping of one-type variables
• make proper comments for large and difficult code blocks
• make proper comments for the functions written by you (their assignment, parameters)

Conclusion

You have learned something new today. You have written two simple indicators. Well, they are
useless, but I am not teaching you to trade successfully! You have seen, how indicators operate,
what parameters and properties they have. You have learned to set buffers and work with them.
You have got acquainted with several new functions. The function iCustom is very important
and will further be used even in Expert Advisors. If you meet any difficulties, reread the article
once again, trying to understand. If you still have some questions, please do not hesitate to use
forums or write comments to the article.

The only way that I could see this happening is that in the "RandonIndicatorSignal" does not use
the same values of randomness then the one being displayed in the window. (ie. it would mean
that on this chart there are actually 2 seperate instances of the "RandomIndicator" created by
MT4, one for display purposes on the chart and another instance for the actual Signal variation.)
Is this actually true?

Question 2:

Also, I've noticed your sentence:
The fact is, there are some situations, when the last tick of the previous bar remains unprocessed,
because when the last tick came, the last but one tick was processed.
This is part of your discussion to justify the following code fragment:
if(counted_bars>0)
 counted_bars--;

MQL4 Language for Newbies. Custom Indicators
(Part 2)

About Graphical Objects

You often deal with them when working in MetaTrader 4 terminal. You can use
graphical objects for various purposes. Traders place support and resistance levels,
pivot points, Fibonacci levels etc. Let us view a simple example of using objects:

Four graphical objects are attached to this chart:

• 2 horizontal lines
• a text object
• an object‐symbol (an arrow)

Today we will learn to attach such objects using MQL4. Just imagine how many
manual actions can be automated by using objects! For example, have you ever
calculated pivot points, support and resistance levels and then drawn them manually?
Well, there is not so much work, but if this process is automated in MQL4, the
terminal will calculate and draw the corresponding levels itself. All you need is a
double click on the script name, and everything will be done. Besides, using graphical
objects one can write very useful signal indicators.

Concepts of Working with Objects

The algorithm of working with all graphical objects in MQL4 is the following:

• creating an object
• modifying its parameters (moving, changing color, stile etc.)
• deleting an object

This is a certain "life cycle". Now let's dwell on each stage.

Creating a Graphical Object

For drawing any graphical object the universal function ObjectCreate() is used.
Here is its prototype:

bool ObjectCreate(string name, int type, int window, datetime time1,
 double price1, datetime time2=0,double price2=0,
 datetime time3=0, double price3=0)

The function returns true, if everything is correct, and false, if an object cannot be
created or an error has occurred. To find out the error code, use the function
GetLastError():

if(ObjectCreate(/* arguments */)==false)
{
 // an error occurred, its code should be recorded into a journal
 Print("Error of calling ObjectCreate():",GetLastError());
}

What for do we need the error code? It will help you to find the error description and
possibly eliminate it. All code descriptions are contained in: MQL4 Reference ->
Standard Constants -> Error Codes.

Let's dwell on all the arguments of the function ObjectCreate():

• name – a unique name of an object. You cannot create 2 objects with the same
name. Further this name will be used in other functions for changing the parameters
of the object representation or moving the object.

• type – an object type. All object types that can be created are contained in: MQL4
Reference ‐> Standard Constants ‐> Object Types. Note, it depends on the object
type, whether the last function arguments should be used. Look once again at the
prototype. Values to the last 4 arguments are assigned by default: different objects
require different amount of data for creation. It is easy. Suppose you need to draw a
point. What information do you need? Obviously, the point position. This will be
enough, right? And to draw a rectangle we need 2 ‐ positions of the upper left and
the lower right points. The same is with the function ObjectCreate(). It is universal.
So, it needs position of one point for drawing a horizontal line and of two points for
drawing a line segment. For drawing a triangle it needs three points. That's why
when creating an object it is recommended to study properly the number of points
needed for drawing it.

• window – the window number, in which the object should be drawn. If you need to
draw an object on a chart, i.e. in the main window, use 0 as the window number.

• time1 – the X coordinate of the first point. The X‐axis in the terminal shows time, so
indicate here time value. For example, to find out the time of the last available bar
you may use the predefined array Time[], like this: Time[0].

• price1 – the Y coordinate of the first point. The Y‐axis in the terminal shows price, so
price values should be used. For example, use the predefined arrays Open[], Close[]
etc.

• other arguments are 2 pairs of the analogous coordinates that define points for
drawing more complex objects. If an object is simple, these parameters are not
used.

Example of Creating Objects. Drawing Lines

Now for better understanding, let's draw a couple of lines. Let's mark the minimal and
the maximal price of the last day. First we need to create a new script and change the
function start():

int start()
{
 double price=iHigh(Symbol(),PERIOD_D1,0);
 // this useful function returns the maximal price for:
 // * specified security, in our case it is Symbol() -
 // active security

 // * specified period, in our case it is PERIOD_D1 (daily)
 // * specified bar, in our case it is 0, the last bar

 ObjectCreate("highLine",OBJ_HLINE,0,0,price);
 // let us view all parameters:
 // "highLine" - the unique object name
 // OBJ_HLINE - object type of the horizontal line
 // 0 - the object is drawn in the main window (chart window)
 // 0 - X coordinate (time), it shouldn't be indicated, because
 // we are drawing a horizontal line
 // price - Y coordinate (price). It is the maximal price

 price=iLow(Symbol(),PERIOD_D1,0);
 // the function is identical with iHigh in arguments, but it
returns
 // the minimal price

 ObjectCreate("lowLine",OBJ_HLINE,0,0,price);

 return(0);
}

Of course we have missed checking for errors. So if you write the same name for the
two objects, it will be your fault. When you start the script, it should look like this:

Lines are drawn but there is something that I dislike. It is the red color, which is too

intense, so it is recommended to use tints. Generally the line appearance can be set up.

Modifying Object Properties. Setting Up the Appearance of Lines

There is a special function that allows setting up parameters of a created graphical
object. It is the function ObjectSet(). Its prototype is:

bool ObjectSet(string name, int index, double value);

Like the previous function it returns true, if everything is correct, and false, if there
are any problems. For example, you have specified a non-existent object name. Let's
view the arguments of this function:

• name – name of a created object. Before starting the modification, make sure that
an object with such a name exists.

• index – index of an object's property that should be modified. All indexes can be
found in: MQL4 Reference ‐> Standard Constants ‐> Object properties. This function
is also universal. It operates according to the following principle: you specify what
property should be modified and what value should be assigned to this property.

• value – this is the value, to which a selected property should be changed. For
example, if you change the color, specify here a new color.

Now let us change our lines, namely: their color, width and style. Change the function
start() of the same script:

int start()
{
 double price=iHigh(Symbol(),PERIOD_D1,0);

 ObjectCreate("highLine",OBJ_HLINE,0,0,price);
 price=iLow(Symbol(),PERIOD_D1,0);
 ObjectCreate("lowLine",OBJ_HLINE,0,0,price);

 ObjectSet("highLine",OBJPROP_COLOR,LimeGreen);
 // changing the color of the upper line
 ObjectSet("highLine",OBJPROP_WIDTH,3);
 // now the line will be 3 pixel wide

 ObjectSet("lowLine",OBJPROP_COLOR,Crimson);
 // changing the color of the lower line
 ObjectSet("lowLine",OBJPROP_STYLE,STYLE_DOT);
 // now the lower line will be dashed

 return(0);
}

You will see the following on the chart:

Deleting Objects

You will often need to delete old or unnecessary objects. There are several functions
for doing this:

bool ObjectDelete(string name);

This function deletes an object of the specified name. If you indicate a non-existent
name, 'false' will be returned.

int ObjectsDeleteAll(int window=EMPTY,int type=EMPTY);

This is an advanced function, it returns the number of deleted objects. It also has
default values. If you do not specify any parameters, the terminal will delete all objects
of an active chart:

ObjectsDeleteAll();
// deleting all objects

If you have created an object in a sub-window (for example, in a window of some
indicator), by specifying the number of this window in the first argument, you can
delete all its objects. We will discuss sub-windows later, so now indicate 0 in the first
argument.

If you need to delete all objects of a certain type, specify this type in the second
argument:

ObjectsDeleteAll(0, OBJ_ARROW);
// deleting all arrows

How to Use All This Correctly?

You may think that you need much knowledge for using all this correctly. For
example, that one should know all these properties and types of objects. But this is not
so. Everything can be found in a Userguide.

First open Toolbox (CTRL+T). There are several tabs in the bottom, select Help.
Suppose you need to draw a graphical object, but don't know how to do this. The
function ObjectCreate() should be used. Write it and leave the arguments empty.
Now place the cursor inside the function name and press F1. And the Help window
will show the information about this function. It means you don't need to search
anything. Now see the function description. It is followed by the description of all its
arguments. Pay attention to the description of the argument type:

It contains a link. By clicking it you will see the list of existing objects. Suppose you
like an ellipse:

Read the description and you will find that 2 coordinates are needed. Let's start:

int start()
{

ObjectCreate("ellipse",OBJ_ELLIPSE,0,Time[100],Low[100],Time[0],High[
0]);
 // indicate 2 points for creating an ellipse:
 // * 1st - lower left point
 // * 2nd - upper right point

 return(0);

}

It is also written that the property OBJPROP_SCALE determines the correlation of
sides. So if we place it as 1, we will get a circle:

int start()
{
 ObjectsDeleteAll();
 // clear the chart before drawing

ObjectCreate("ellipse",OBJ_ELLIPSE,0,Time[100],Low[100],Time[0],High[
0]);

 ObjectSet("ellipse",OBJPROP_SCALE,1.0);
 // change the correlation of sides
 ObjectSet("ellipse",OBJPROP_COLOR,Gold);
 // change the color

 return(0);
}

I am sure you also didn't get a circle, because one-to-one scale should be set in the
chart properties (click right button on any empty place of the chart and select
Properties):

You see, everything is easy. Actually you can place the cursor on any key word and
press F1, after that you will see the corresponding information from the Help. So you
do not need to remember all names of types and properties for quick and efficient code
writing using the built-in Help. MetaEditor has one more very important property that
will help you to write a code: when writing arguments in a built-in function, press
CTRL + SHIFT + space. You will see a prompting with the function prototype:

Creating Graphical Objects in Subwindows

If you need to draw graphical objects in a subwindow for example in a window of a
custom indicator, you should know its number. As an example we will write a simple
indicator that will draw a horizontal line in a separate window. Create a custom
indicator and add the following in the code:

//+--
+
//| creatingObjectsInSubWindow.mq4
|
//| your name
//| email address
//+--

+
#property copyright "Antonuk Oleg"
#property link "antonukoleg@gmail.com"

#property indicator_separate_window
// indicator will be written in a separate window
#property indicator_minimum 1
// minimal indicator value is 1
#property indicator_maximum 10
// maximal is 10

//+--
+
//| Custom indicator initialization function
|
//+--
+
int init()
{
 IndicatorShortName("NiceLine");
 // this simple function sets a short indicator name,
 // you see it in the upper left corner of any indicator.
 // What for do we need it? The function WindowFind searches a
subwindow
 // with a specified short name and returns its number.

 int windowIndex=WindowFind("NiceLine");
 // finding the window number of our indicator

 if(windowIndex<0)
 {
 // if the number is -1, there is an error
 Print("Can\'t find window");
 return(0);
 }

 ObjectCreate("line",OBJ_HLINE,windowIndex,0,5.0);
 // drawing a line in the indicator subwindow

 ObjectSet("line",OBJPROP_COLOR,GreenYellow);
 ObjectSet("line",OBJPROP_WIDTH,3);

 WindowRedraw();
 // redraw the window to see the line

 return(0);
}
//+--
+
//| Custom indicator deinitialization function
|
//+--
+
int deinit()
{
 ObjectsDeleteAll();
 // delete all objects

 return(0);
}
//+--
+
//| Custom indicator iteration function
|
//+--
+
int start()
{
 return(0);
}

Start the indicator. There is no line!

We need to change the chart period.

Now it is here. What happened? Actually, the subwindow number cannot be found in
the function init(), when it is started for the first time. Perhaps, the reason is that the
subwindow is not yet crated by the terminal during initialization. There is a way to
avoid it - everything should be done in the function start(),when the window is
already created, like this:

//+--
+
//| creatingObjectsInSubWindow.mq4
|
//| Antonuk Oleg
|
//| antonukoleg@gmail.com
|
//+--
+
#property copyright "Antonuk Oleg"
#property link "antonukoleg@gmail.com"

#property indicator_separate_window
#property indicator_minimum 1
#property indicator_maximum 10

bool initFinished=false;
// adding a variable that will remember the initialization state.

// false - there was no initialization
// true - there was initialization

//+--
+
//| Custom indicator initialization function
|
//+--
+
int init()
{
 return(0);
}
//+--
+
//| Custom indicator deinitialization function
|
//+--
+
int deinit()
{
 ObjectsDeleteAll();
 // deleting all objects

 return(0);
}
//+--
+
//| Custom indicator iteration function
|
//+--
+
int start()
{
 if(initFinished==false)
 {
 IndicatorShortName("NiceLine");

 int windowIndex=WindowFind("NiceLine");

 if(windowIndex<0)
 {
 // if the subwindow number is -1, there is an error
 Print("Can\'t find window");
 return(0);
 }

 ObjectCreate("line",OBJ_HLINE,windowIndex,0,5.0);
 // drawing a line in the indicator subwindow

 ObjectSet("line",OBJPROP_COLOR,GreenYellow);
 ObjectSet("line",OBJPROP_WIDTH,3);

 WindowRedraw();
 // redraw the window to see the line

 initFinished=true;

 // drawing is finished
 }

 return(0);
}

Now everything will be drawn from the first time. What you should remember here, is
that the subwindow number is found out in the function start(), and not init().

Have Some Practice

Using the Help, try to study some new types of graphical objects. After that write a
script that will draw them and set up parameters. Study this properly, have some
practice and only after that continue reading the article.

Writing a Signal Indicator. What Is It?

Imagine the situation. A trader uses several indicators for making decisions about
entering the market: Moving Average, Parabolic SAR and Williams’ Percent Range.
These are built-in indicators, which look like this:

A trader constantly estimates a situation in the market the following way: the market
should be entered when signals come from each of the three indicators:

• If the quick moving average is above the slow one, this is a signal to buy. If vice versa
‐ to sell.

• If price is lower than Parabolic SAR, this is a signal to sell. If vice versa ‐ to buy.
• If WPR is larger than ‐20, this is a signal to buy. If WPR is lower than ‐80, this is a

signal to sell.

The trader constantly has to check all the conditions, trying also to track the situation
on several periods. It is a hard job. So, a signal indicator doing all checks could help
him:

Today we will learn to solve this problem. We will write a signal indicator that will be
easily set up. Besides, you will easily create your own modification with your favorite
indicators based on this one.

Basics

We will face some problems of drawing when creating this indicator. All graphical
objects are drawn using price and time coordinates. Because of this, what is drawn is
constantly shifted. To make objects stay in one place, we would need to change
constantly their coordinates. But if you want to see what was earlier and shift the chart,
the signal table will also be shifted. But each rule has exceptions. Among graphical
objects there is the one called OBJ_LABEL. It is a text mark used for positioning not
price and time, but coordinates about the window in pixels. It is easy:

We see a common text sign "X". In its parameters you can see that its coordinates are
specified in pixels. A pixel is the smallest point on the screen. Note that the
coordinates of the upper left corner are: x=0, y=0 (0,0). If we increase x, the object
will be shifted to the right, if we diminish it, it will be shifted to the left. The same is
with the y-coordinate. It can be shifted upwards or downwards. It is important to
understand and remember this principle. For practicing, you can create a mark and
shift it to see how its coordinates are changed in the properties. Also you can view old
quotes by shifting the chart. At that the mark is not shifted. Using such marks we can
create a signal indicator without the disadvantages described above.

Options of a Text Mark

Our signal indicator will use only text marks. So let's dwell on their options. First,

create a new indicator (do not use data buffers and parameters) and change the
function init():

int init()
{
 // now we will crate a text mark.
 // for this use the function ObjectCreate.
 // do not indicate coordinates
 ObjectCreate("signal",OBJ_LABEL,0,0,0,0,0);

 // change the x-coordinate
 ObjectSet("signal",OBJPROP_XDISTANCE,50);

 // change the y-coordinate
 ObjectSet("signal",OBJPROP_YDISTANCE,50);

 // to indicate the mark text, use the following function
 ObjectSetText("signal","lambada",14,"Tahoma",Gold);
 // "signal" - object name
 // "lambada" - text
 // 14 - font size
 // Gold - color

 return(0);
}

You see, everything is easy. The ObjectCreate() function will be used only in
initialization to create all necessary objects. Using ObjectSetText(), we will change
the appearance of objects at each price change in the function start(). We also need to
change the function deinit():

int deinit()
{
 // when deleting the indicator delete all objects
 ObjectsDeleteAll();

 return(0);
}

Now start the indicator and view the results:

We will use the following options of marks:

• change the font into Wingdings to make available special symbols (from squares and
circles to smiles):

• we will change color and text of the mark
• we will change position and size of the mark

Using the Font Wingdings

Now let's create a mark using the Windings font. Change the init() function:

int init()
{

 ObjectCreate("signal",OBJ_LABEL,0,0,0,0,0);
 ObjectSet("signal",OBJPROP_XDISTANCE,50);
 ObjectSet("signal",OBJPROP_YDISTANCE,50);

 // use symbols from the Wingdings font
 ObjectSetText("signal",CharToStr(164),60,"Wingdings",Gold);
 // CharToStr() - this function returns a line with a single
 // symbol, the code of which is specified in the single argument.
 // Simply select a symbol from the table above and write
 // its number into this function
 // 60 - use large font
 // "Wingdings" - use font Wingdings

 return(0);
}

Here is the result:

Drawing a Model of a Signal Table

Now let us draw a model of a table of signals. Actually this will be a number of
squares:

int init()
{
 // use 2 cycles. The first cycle, with the counter "x" draws one
by one
 // each column from left to wright. The second cycle draws symbols
of each
 // column from top downward. At each iteration the cycle will
create a mark.
 // These 2 cycles create 9 columns (9 periods) 3 marks each (3
signal types).
 for(int x=0;x<9;x++)
 for(int y=0;y<3;y++)
 {
 ObjectCreate("signal"+x+y,OBJ_LABEL,0,0,0,0,0);
 // create the next mark, Note that the mark name
 // is created "on the fly" and depends on "x" and "y"
counters

 ObjectSet("signal"+x+y,OBJPROP_XDISTANCE,x*20);
 // change the X coordinate.

 // x*20 - each mark is created at the interval of 20 pixels
 // horizontally and directly depends on the "x" counter

 ObjectSet("signal"+x+y,OBJPROP_YDISTANCE,y*20);
 // change the Y coordinate.
 // y*20 - each mark is created at the interval of 20 pixels
 // vertically and directly depends on the "y" counter

ObjectSetText("signal"+x+y,CharToStr(110),20,"Wingdings",Gold);
 // use the 110th symbol code (square)
 }

 return(0);
}

The pattern is ready. Let us add indents to the left and above it, so that the terminal
text could be seen:

int init()
{
 for(int x=0;x<9;x++)
 for(int y=0;y<3;y++)
 {
 ObjectCreate("signal"+x+y,OBJ_LABEL,0,0,0,0,0);
 ObjectSet("signal"+x+y,OBJPROP_XDISTANCE,x*20+12);
 // adding a horizontal indent 12 pixels

 ObjectSet("signal"+x+y,OBJPROP_YDISTANCE,y*20+20);
 // adding a vertical indent 20 pixels

ObjectSetText("signal"+x+y,CharToStr(110),20,"Wingdings",Gold);
 }

 return(0);
}

Activate the Pattern

Now let's make operate at least one of the squares. Suppose the upper left square will
show a signal of moving averages on a minute timeframe (M1). If there is a signal to
buy, the square will change its color into green. If there is a signal to sell - it becomes
red. We need to change the function start():

int start()
{
 // if quick moving average (period - 13) is larger than the slow
one,
 // this is a signal to buy. Check the last bar
 if(iMA(Symbol(),1,13,0,0,0,0)>iMA(Symbol(),1,24,0,0,0,0))

ObjectSetText("signal00",CharToStr(110),20,"Wingdings",YellowGreen);
 // change the color of the mark named "signal00" (the upper left)
 // into green

 else
 // else, if the quick MA is smaller than the slow one, this is a
signal to sell.
 ObjectSetText("signal00",CharToStr(110),20,"Wingdings",Tomato);
 // change the color into red

 return(0);
}

Activate the Upper Row

Let's continue the activation. The left square indicates the smallest timeframe - M1.
Now let's make it so that each square indicates a timeframe larger than the previous
one. So, the second square shows signals on M5, the third one - M15 and so on, up to
MN1. Of course, all this will be done in a cycle. What is changed, is the name and the
period. We have 0 squares, so we use one counter. But we face a problem with
periods, because they are changed without any regularities. See:

One would think that a cycle cannot be used here. It is not true. All we need is to
declare a special array in the indicator code beginning:

///
/
//
// signalTable.mq4
// Antonuk Oleg
// antonukoleg@gmail.com
//
///
/
#property copyright "Antonuk Oleg"
#property link "antonukoleg@gmail.com"

#property indicator_chart_window

int period[]={1,5,15,30,60,240,1440,10080,43200};

All periods are written down in the array, now they can easily be used in a cycle:

int start()
{
 // use a cycle to activate all squares of the first line
 for(int x=0;x<9;x++)
 {

if(iMA(Symbol(),period[x],13,0,0,0,0)>iMA(Symbol(),period[x],24,0,0,0
,0))

ObjectSetText("signal"+x+"0",CharToStr(110),20,"Wingdings",YellowGree
n);

 // "signal"+x+"0" - create a mark name dynamically depending
on
 // the counter "x"
 else

ObjectSetText("signal"+x+"0",CharToStr(110),20,"Wingdings",Tomato);
 }

 return(0);
}

We use the array period[] as a table of correspondence of the "x" counter and the
period. Imagine how much code would be needed if not for this small array! So, the
first row of signal squares is ready:

Adding Writings

It is all ok, but it is hard to understand what is the timeframe of the square, so let's
create explanatory signatures. We will also use an array of correspondences that will

store writings for each column:

#property indicator_chart_window

int period[]={1,5,15,30,60,240,1440,10080,43200};

string
periodString[]={"M1","M5","M15","M30","H1","H4","D1","W1","MN1"};

Writings will be created in init() with the help of the following cycle:

int init()
{
 for(int x=0;x<9;x++)
 for(int y=0;y<3;y++)
 {
 ObjectCreate("signal"+x+y,OBJ_LABEL,0,0,0,0,0);
 ObjectSet("signal"+x+y,OBJPROP_XDISTANCE,x*20+12);
 ObjectSet("signal"+x+y,OBJPROP_YDISTANCE,y*20+20);

ObjectSetText("signal"+x+y,CharToStr(110),20,"Wingdings",Gold);
 }

 // create writings for periods from left to right
 for(x=0;x<9;x++)
 {
 // everything is as usual
 ObjectCreate("textPeriod"+x,OBJ_LABEL,0,0,0,0,0);
 ObjectSet("textPeriod"+x,OBJPROP_XDISTANCE,x*20+12);
 ObjectSet("textPeriod"+x,OBJPROP_YDISTANCE,10);
 ObjectSetText("textPeriod"+x,periodString[x],8,"Tahoma",Gold);
 // we use the array periodString[], to indicate writings
 }

 return(0);
}

Adding Some Parameters

Let's make the indicator more flexible, adding a couple of parameters so that a user
could set up the external view of the indicator:

#property copyright "Antonuk Oleg"
#property link "antonukoleg@gmail.com"

#property indicator_chart_window

extern int scaleX=20, // horizontal interval at which the squares are
created
 scaleY=20, // vertical interval
 offsetX=35, // horizontal indent of all squares
 offsetY=20, // vertical indent
 fontSize=20; // font size

int period[]={1,5,15,30,60,240,1440,10080,43200};
string
periodString[]={"M1","M5","M15","M30","H1","H4","D1","W1","MN1"};

Also let's change the code of functions init() and start():

int init()
{
 for(int x=0;x<9;x++)
 for(int y=0;y<3;y++)
 {
 ObjectCreate("signal"+x+y,OBJ_LABEL,0,0,0,0,0);
 ObjectSet("signal"+x+y,OBJPROP_XDISTANCE,x*scaleX+offsetX);
 ObjectSet("signal"+x+y,OBJPROP_YDISTANCE,y*scaleY+offsetY);

ObjectSetText("signal"+x+y,CharToStr(110),fontSize,"Wingdings",Gold);
 }

 for(x=0;x<9;x++)
 {
 ObjectCreate("textPeriod"+x,OBJ_LABEL,0,0,0,0,0);
 ObjectSet("textPeriod"+x,OBJPROP_XDISTANCE,x*scaleX+offsetX);
 ObjectSet("textPeriod"+x,OBJPROP_YDISTANCE,offsetY-10);
 ObjectSetText("textPeriod"+x,periodString[x],8,"Tahoma",Gold);
 }

 return(0);
}

int start()
{
 for(int x=0;x<9;x++)
 {

if(iMA(Symbol(),period[x],13,0,0,0,0)>iMA(Symbol(),period[x],24,0,0,0
,0))

ObjectSetText("signal"+x+"0",CharToStr(110),fontSize,"Wingdings",Yell
owGreen);
 else

ObjectSetText("signal"+x+"0",CharToStr(110),fontSize,"Wingdings",Toma
to);
 }

 return(0);
}

Activating Other Rows

The second row will indicate signals of Williams’ Percent Range, the third raw – of
Parabolic SAR. Modifying the function start():

int start()
{
 for(int x=0;x<9;x++)
 {

if(iMA(Symbol(),period[x],13,0,0,0,0)>iMA(Symbol(),period[x],24,0,0,0
,0))

ObjectSetText("signal"+x+"0",CharToStr(110),fontSize,"Wingdings",Yell
owGreen);
 else

ObjectSetText("signal"+x+"0",CharToStr(110),fontSize,"Wingdings",Toma
to);
 }

 // activate the second row
 for(x=0;x<9;x++)
 {
 // if the absolute value of WPR is lower than 20, this is a
signal to buy
 if(MathAbs(iWPR(Symbol(),period[x],13,0))<20.0)

ObjectSetText("signal"+x+"1",CharToStr(110),fontSize,"Wingdings",Yell
owGreen);
 // if the absolute value of WPR is larger than 80, this is a
signal to sell
 else if(MathAbs(iWPR(Symbol(),period[x],13,0))>80.0)

ObjectSetText("signal"+x+"1",CharToStr(110),fontSize,"Wingdings",Toma
to);
 // else, if there are no signals, a square is painted gray
 else

ObjectSetText("signal"+x+"1",CharToStr(110),fontSize,"Wingdings",Dark
Gray);
 }

 // activate the third row
 for(x=0;x<9;x++)
 {
 // if the current price is larger than the value of SAR, this
is a signal to buy
 if(iSAR(Symbol(),period[x],0.02,0.2,0)<Close[0])

ObjectSetText("signal"+x+"2",CharToStr(110),fontSize,"Wingdings",Yell
owGreen);
 // otherwise, it is a signal to sell
 else

ObjectSetText("signal"+x+"2",CharToStr(110),fontSize,"Wingdings",Toma
to);
 }

 return(0);
}

Adding the Names of Signals

Now let's put a name for each row. Let's create 3 writings on the left using an array as
earlier:

int period[]={1,5,15,30,60,240,1440,10080,43200};
string
periodString[]={"M1","M5","M15","M30","H1","H4","D1","W1","MN1"},
 // create one more array with indicator names
string signalNameString[]={"MA","WPR","SAR"};

Change the function init():

int init()
{
 for(int x=0;x<9;x++)
 for(int y=0;y<3;y++)
 {
 ObjectCreate("signal"+x+y,OBJ_LABEL,0,0,0,0,0);
 ObjectSet("signal"+x+y,OBJPROP_XDISTANCE,x*scaleX+offsetX);
 ObjectSet("signal"+x+y,OBJPROP_YDISTANCE,y*scaleY+offsetY);

ObjectSetText("signal"+x+y,CharToStr(110),fontSize,"Wingdings",Gold);

 }

 for(x=0;x<9;x++)
 {
 ObjectCreate("textPeriod"+x,OBJ_LABEL,0,0,0,0,0);
 ObjectSet("textPeriod"+x,OBJPROP_XDISTANCE,x*scaleX+offsetX);
 ObjectSet("textPeriod"+x,OBJPROP_YDISTANCE,offsetY-10);
 ObjectSetText("textPeriod"+x,periodString[x],8,"Tahoma",Gold);
 }

 // draw signal names from top downwards
 for(y=0;y<3;y++)
 {
 ObjectCreate("textSignal"+y,OBJ_LABEL,0,0,0,0,0);
 ObjectSet("textSignal"+y,OBJPROP_XDISTANCE,offsetX-25);
 ObjectSet("textSignal"+y,OBJPROP_YDISTANCE,y*scaleY+offsetY+8);

ObjectSetText("textSignal"+y,signalNameString[y],8,"Tahoma",Gold);
 }

 return(0);
}

Adding the Option of Changing the Binding Corner

Now we will add an option of choosing the position of the signal indicator. Now it is
bound to the upper left corner. If we change the mark property
OBJPROP_CORNER, the corner will be changed. This property can take the
following values:

• 0 – the upper left corner
• 1 – the upper right corner
• 2 – the lower left corner
• 3 – the lower right corner

So, let's add a new parameter – corner:

#property indicator_chart_window

extern int scaleX=20,
 scaleY=20,
 offsetX=35,
 offsetY=20,
 fontSize=20,
 corner=0; // adding a parameter for choosing a corner

And we change the function init():

int init()
{
 // a table of signals
 for(int x=0;x<9;x++)
 for(int y=0;y<3;y++)
 {
 ObjectCreate("signal"+x+y,OBJ_LABEL,0,0,0,0,0);
 ObjectSet("signal"+x+y,OBJPROP_CORNER,corner);
 // change the corner
 ObjectSet("signal"+x+y,OBJPROP_XDISTANCE,x*scaleX+offsetX);
 ObjectSet("signal"+x+y,OBJPROP_YDISTANCE,y*scaleY+offsetY);

ObjectSetText("signal"+x+y,CharToStr(110),fontSize,"Wingdings",Gold);
 }

 // name of timeframes
 for(x=0;x<9;x++)
 {
 ObjectCreate("textPeriod"+x,OBJ_LABEL,0,0,0,0,0);
 ObjectSet("textPeriod"+x,OBJPROP_CORNER,corner);
 // changing the corner
 ObjectSet("textPeriod"+x,OBJPROP_XDISTANCE,x*scaleX+offsetX);
 ObjectSet("textPeriod"+x,OBJPROP_YDISTANCE,offsetY-10);
 ObjectSetText("textPeriod"+x,periodString[x],8,"Tahoma",Gold);
 }

 // names of indicators
 for(y=0;y<3;y++)
 {
 ObjectCreate("textSignal"+y,OBJ_LABEL,0,0,0,0,0);

 ObjectSet("textSignal"+y,OBJPROP_CORNER,corner);
 // change the corner
 ObjectSet("textSignal"+y,OBJPROP_XDISTANCE,offsetX-25);
 ObjectSet("textSignal"+y,OBJPROP_YDISTANCE,y*scaleY+offsetY+8);

ObjectSetText("textSignal"+y,signalNameString[y],8,"Tahoma",Gold);
 }

 return(0);
}

Adding New Parameters

We can add some more parameters for a flexible setup of the indicator appearance. All
parameters:

• all available colors
• all available symbol codes

First we need to declare all these parameters at the beginning of the code:

extern int scaleX=20,
 scaleY=20,
 offsetX=35,
 offsetY=20,
 fontSize=20,
 corner=0,
 symbolCodeBuy=110, // a symbol code for a buy signal
 symbolCodeSell=110, // sell signal
 symbolCodeNoSignal=110; // no signal

extern color signalBuyColor=YellowGreen, // color of the symbol of a
buy signal
 signalSellColor=Tomato, // for a sell signal
 noSignalColor=DarkGray, // no signal
 textColor=Gold; // color of all writings

Let's change the function init():

int init()
{
 // table of signals
 for(int x=0;x<9;x++)
 for(int y=0;y<3;y++)
 {
 ObjectCreate("signal"+x+y,OBJ_LABEL,0,0,0,0,0);
 ObjectSet("signal"+x+y,OBJPROP_CORNER,corner);
 ObjectSet("signal"+x+y,OBJPROP_XDISTANCE,x*scaleX+offsetX);
 ObjectSet("signal"+x+y,OBJPROP_YDISTANCE,y*scaleY+offsetY);
 ObjectSetText("signal"+x+y,CharToStr(symbolCodeNoSignal),
 fontSize,"Wingdings",noSignalColor);
 }

 // names of timeframes
 for(x=0;x<9;x++)
 {
 ObjectCreate("textPeriod"+x,OBJ_LABEL,0,0,0,0,0);
 ObjectSet("textPeriod"+x,OBJPROP_CORNER,corner);
 ObjectSet("textPeriod"+x,OBJPROP_XDISTANCE,x*scaleX+offsetX);
 ObjectSet("textPeriod"+x,OBJPROP_YDISTANCE,offsetY-10);

ObjectSetText("textPeriod"+x,periodString[x],8,"Tahoma",textColor);
 }

 // names of indicators
 for(y=0;y<3;y++)
 {
 ObjectCreate("textSignal"+y,OBJ_LABEL,0,0,0,0,0);
 ObjectSet("textSignal"+y,OBJPROP_CORNER,corner);
 ObjectSet("textSignal"+y,OBJPROP_XDISTANCE,offsetX-25);
 ObjectSet("textSignal"+y,OBJPROP_YDISTANCE,y*scaleY+offsetY+8);

ObjectSetText("textSignal"+y,signalNameString[y],8,"Tahoma",textColor
);
 }

 return(0);
}

Changing the function start():

int start()
{
 for(int x=0;x<9;x++)
 {

if(iMA(Symbol(),period[x],13,0,0,0,0)>iMA(Symbol(),period[x],24,0,0,0
,0))

ObjectSetText("signal"+x+"0",CharToStr(symbolCodeBuy),fontSize,
 "Wingdings",signalBuyColor);
 else

ObjectSetText("signal"+x+"0",CharToStr(symbolCodeSell),fontSize,
 "Wingdings",signalSellColor);
 }

 for(x=0;x<9;x++)
 {
 if(MathAbs(iWPR(Symbol(),period[x],13,0))<20.0)

ObjectSetText("signal"+x+"1",CharToStr(symbolCodeBuy),fontSize,
 "Wingdings",signalBuyColor);
 else if(MathAbs(iWPR(Symbol(),period[x],13,0))>80.0)

ObjectSetText("signal"+x+"1",CharToStr(symbolCodeSell),fontSize,
 "Wingdings",signalSellColor);
 else

ObjectSetText("signal"+x+"1",CharToStr(symbolCodeNoSignal),fontSize,
 "Wingdings",noSignalColor);
 }

 for(x=0;x<9;x++)
 {
 if(iSAR(Symbol(),period[x],0.02,0.2,0)<Close[0])

ObjectSetText("signal"+x+"2",CharToStr(symbolCodeBuy),fontSize,
 "Wingdings",signalBuyColor);
 else

ObjectSetText("signal"+x+"2",CharToStr(symbolCodeSell),fontSize,
 "Wingdings",signalSellColor);
 }

 return(0);
}

Changing the External View

The indicator is ready. By changing the input parameters we can fully change the
external view:

extern int scaleX=20,
 scaleY=20,
 offsetX=35,
 offsetY=20,
 fontSize=20,
 corner=2,
 symbolCodeBuy=67,
 symbolCodeSell=68,
 symbolCodeNoSignal=73;

extern color signalBuyColor=Gold,
 signalSellColor=MediumPurple,
 noSignalColor=WhiteSmoke,
 textColor=Gold;

Home Task

Try to create your own signal conditions and add one more row. Create several new
parameters. For example, a parameter that will detect the font size of writings
(timeframes and signal names). Set up the external view of the indicator according to
your own preferencies.

Conclusion

Today we learned to use graphical objects in scripts and indicators. We learned to
create objects, modify their parameters, check for errors. You have received enough
knowledge for study new types of graphical objects by yourself. You have also created
step-by-step a complex indicator that can be easily and flexibly set up.

	MQL4 Language for Newbies. Custom Indicators (Part 2)
	About Graphical Objects
	Concepts of Working with Objects
	Creating a Graphical Object
	Example of Creating Objects. Drawing Lines
	Modifying Object Properties. Setting Up the Appearance of Lines
	Deleting Objects
	How to Use All This Correctly?
	Creating Graphical Objects in Subwindows
	Have Some Practice
	Writing a Signal Indicator. What Is It?
	Basics
	Options of a Text Mark
	Using the Font Wingdings
	Drawing a Model of a Signal Table
	Activate the Pattern
	Activate the Upper Row
	Adding Writings
	Adding Some Parameters
	Activating Other Rows
	Adding the Names of Signals
	Adding the Option of Changing the Binding Corner
	Adding New Parameters
	Changing the External View
	Home Task
	Conclusion

